
This paper is included in the Proceedings of the
31st USENIX Security Symposium.

August 10–12, 2022 • Boston, MA, USA
978-1-939133-31-1

Open access to the Proceedings of the
31st USENIX Security Symposium is

sponsored by USENIX.

SARA: Secure Android Remote Authorization
Abdullah Imran, Habiba Farrukh, Muhammad Ibrahim,
Z. Berkay Celik, and Antonio Bianchi, Purdue University

https://www.usenix.org/conference/usenixsecurity22/presentation/imran

SARA: Secure Android Remote Authorization

Abdullah Imran, Habiba Farrukh, Muhammad Ibrahim, Z. Berkay Celik, and Antonio Bianchi
Purdue University, {imran8, hfarrukh, ibrahi23, zcelik, antoniob}@purdue.edu

Abstract
Modern smartphones are equipped with Trusted Execution En-
vironments (TEEs), offering security features resilient even
against attackers able to fully compromise the normal oper-
ating system (e.g., Linux in Android devices). The academic
community, as well as the smartphone manufacturers, have
proposed to use TEEs to strengthen the security of authoriza-
tion protocols. However, the usage of these protocols has been
hampered by both practicality issues and lack of completeness
in terms of security.

To address these issues, in this paper, we design, implement,
and evaluate SARA (Secure Android Remote Authorization),
an Android library that uses the existing TEE-powered Android
APIs to implement secure, end-to-end remote authorization for
Android apps. SARA is practical in its design, as it makes use
of Android APIs and TEE features that are already present in
modern Android devices to implement a novel secure authoriza-
tion protocol. In fact, SARA does not require any modifications
to the Android operating system nor to the code running in
TrustZone (the TEE powering existing Android devices). For
this reason, it can be readily used in existing apps running on
existing smartphones. Moreover, SARA is designed to ensure
that even developers that have no experience in implementing
security protocols can make use of it within their apps. At the
same time, SARA is secure, since it allows implementing autho-
rization protocols that are resilient even against attackers able
to achieve root privileges on a compromised Android device.

We first evaluate SARA by conducting a user study to ascer-
tain its usability. Then, we prove SARA’s security features by
formally verifying its security protocol using ProVerif.

1 Introduction
People are becoming increasingly reliant on their smartphones
and other smart devices in their daily lives. Developers have fu-
eled this reliance by designing solutions to most of the everyday
problems in the form of applications (apps). Furthermore, an
increasing number of applications deal with security-sensitive
tasks such as online payments or online banking. New regula-
tions, such as the European Banking Authority’s Strong Cus-
tomer Authentication [13], require that electronic payments be
made secure by the use of two-factor authentication. Smart-
phone applications are often used to implement the second
factor or sometimes even both factors. The security measures

TEE to Server

TEE to User

User Input to TEE

User

TEE

Android Device

Remote
Server

TEE to User

User Input to TEE

TEE to Server

Figure 1: TEE-enforced communication channels

of these applications rely on the integrity of the underlying
OS. Unfortunately, more attacks are being discovered that can
compromise the entire OS, and, consequently, the security of
the apps running on a mobile device [5].

Trusted Execution Environments (TEEs) provide a solution
for this issue by running security-sensitive tasks in a separate
execution environment. In the case of Android devices, ARM’s
TrustZone [15] serves as the TEE for most devices, and it
offers hardware-backed, strong security services to third-party
apps [8]. These security services, like hardware backed key
storage and Secure UI, help in achieving stronger security for
various functionalities, such as user authentication and device
attestation, which are prerequisites for the authorization of
security-sensitive operations.

As an example, consider a banking app that allows a user
to make transactions. For the transaction to be authorized, the
banking server needs to ensure that the user identifies them-
selves to prove they are the right person authorizing the transac-
tion. We call this process User Authentication. The server also
needs to carry out User Confirmation, a process ensuring that
the user knows exactly what transaction is taking place and that
the user willingly confirms that transaction. In addition, the
server needs a guarantee that the client device has the security
features that are prerequisites to perform such a transaction by
means of a process known as Device Attestation. These pro-
cesses allow backend servers to determine whether an action
was legitimately authorized.

If the adversary obtains root privileges on an Android de-
vice, all of these steps are vulnerable. Stored credentials can be
stolen, confirmation messages can be spoofed, and the presence
of security features can be faked. However, using TEEs, it is

USENIX Association 31st USENIX Security Symposium 1561

possible to implement remote authorization resilient against
attackers capable of compromising the OS (i.e., root attack-
ers), by securing all channels involved in the communication
between the user, the app, and the app’s remote backend (as
shown in Figure 1).

Android itself provides developers with TEE-enforced fea-
tures through dedicated APIs. Unfortunately, existing apps
rarely use these features, as they require developers to have
abundant experience with these complex cryptographic APIs.
Furthermore, to achieve root-resilient authorization, these APIs
need to be combined, which is an even harder task to accom-
plish. Prior works also proposed several solutions [31,35,36,
40,44,45] to implement root-resilient authorization protocols,
but they require hardware, OS, or TEE modifications, making
them impractical to be used on real devices.

To address these issues, we propose SARA, a library imple-
menting a novel authorization protocol on top of the existing
TEE-enforced APIs currently offered by Android. SARA is
designed to be practical and secure.

SARA’s practicality derives from the fact that any developer
can integrate it within their Android apps with only a few lines
of code. Moreover, the library does not require any hardware
modifications or changes to the existing Android or TEE code,
since it relies on the existing Android APIs, making it easy to
deploy on existing smartphones. Lastly, SARA ensures that
all the cryptographic procedures and checks are handled by
the library, leaving less room for security flaws introduced by
developers.

SARA’s security is guaranteed by the fact that in its autho-
rization protocol, all the channels in Figure 1 are under the
control of the TEE and an app’s backend server can verify
that every authorized action has been handled by the TEE. In
addition, it ensures that users are aware of the actions being
authorized and have biometrically authenticated themselves.

We proved the security of SARA by using ProVerif [27].
Then, we evaluated the practicality of SARA with a user study.
The results of this study show that using our library significantly
improves the ability of developers to implement root-resilient
remote authorization within Android apps.

In summary, these are the main contributions of our work:

• We analyze the existing TEE-enforced APIs in Android
and how existing apps use them. Our analysis of 112,886
apps revealed that these APIs are currently not used to
improve the security of authorization protocols.

• To address the lack of usage of such features, we design
a new security protocol that utilizes the already existing
Android APIs to perform a root-resilient form of remote
authorization, and we verify its security using ProVerif.

• We develop an Android library and a server module to
allow developers to easily implement our new security
protocol, and we evaluate its usability with a user study.

In the spirit of open science, and to ensure our work bene-
fits the entire Android community, we have publicly released
SARA [21].

2 Background and Threat Model
This section introduces background information about TEEs
and Android, which will be useful throughout the paper.

2.1 Trusted Execution Environments
A Trusted Execution Environment (TEE) is a “secure” iso-
lated execution environment that runs concurrently with the
non-secure “rich” Android OS. There are many different im-
plementations of TEEs, e.g., ARM’s TrustZone, which serves
as the TEE for most Android devices. Systems that employ
the use of a TEE can run code and store data in two separate
environments. The secure environment consists of a trusted
kernel along with trusted applications. They are both signed
by the OEM and isolated from the non-secure environment. To
allow third-party applications in the non-secure world to access
services that run in the secure environment, Android provides
APIs that can interact with the “trusted” applications without
granting direct access to them.

2.2 Terminology
We provide a common terminology for some recurring terms
in this paper. A legitimate user is the one that is adjudged by a
system to be the unique individual that holds the authority to
perform certain actions. TEE-enforced APIs are APIs exposed
to the application by the Android OS. They give an app the
ability to access TEE-controlled functionality, such as crypto-
graphic key storage. Authorization is the process through which
a system determines if the legitimate user wishes to perform a
certain action.

2.3 TEE-enforced API Usage
Key Storage Android provides a Key Storage to store and use
cryptographic keys. This Key Storage is implemented within
the TEE, ensuring that cryptographic material (i.e., the stored
cryptographic keys) cannot leave the TEE. In fact, keys inside
the TEE are inaccessible directly by Android apps, and any
cryptographic operation such as encryption or signing with
these keys is performed inside the TEE. This feature allows
apps to use these keys without ever exposing them to the OS,
which ensures that even root attackers cannot access these keys.
The Key Storage can generate keypairs. In this case, the private
key remains stored in the TEE, while the public key is returned
to an app. The app can later invoke the TEE to sign arbitrary
data using the TEE-stored private key.
Key Attestation In version 7.0, Android introduced a key
attestation mechanism. This allows a remote server to crypto-
graphically verify different properties of the obtained public
key, including whether the corresponding private key is stored
safely inside the TEE. The server first sends an attestation

1562 31st USENIX Security Symposium USENIX Association

Biometric Prompt Confirmation Prompt

Biometric Authorization

Use your biometric credentials to
authorize the transfer of 9000

USD to Alice

Cancel

Double-press power to confirm

Cancel

Android Protected
Confirmation

You are going to transfer 9000
USD to Alice

Power Button

Volume Buttons

Prompt

Figure 2: Sample display of Biometric Prompt (left) and Con-
firmation Prompt (right)

challenge to the client device. The keypair is then made by the
client device by setting the attestation challenge to the one sent
by the server. This attestation challenge is embedded within the
key’s corresponding attestation certificate, allowing the remote
server to ascertain that the keypair was created in response to
a specific request for which a specific attestation challenge
was sent. The attestation certificate consists of a certificate
chain, rooted to a Google-owned private key, signed with a
secret key stored within the TEE. After the keypair is created,
the corresponding certificate chain is sent to the server. The
server then parses the certificate chain to check if it has the
correct attestation challenge and shows that the keypair has the
required properties. Specifically, obtaining an attestation cer-
tificate chain having, as a root certificate, a Google’s Hardware
Attestation Root Certificate, guarantees that the corresponding
key has been generated within a TEE-based KeyStore.

Android Protected Confirmation An essential component of
remote authorization is the ability to show the user the action
being authorized and get a confirmation from them.

In Android 9, the Android Protected Confirmation [4] feature
was introduced, which allows a user to perform TEE-enforced
confirmation. Specifically, by using this feature, the TEE dis-
plays the prompt on a trusted screen (Figure 2) and takes the
confirmation input through a hardware button. The TEE can
store keypairs that can only be used to sign the prompt dis-
played on the trusted screen and only when the user presses
the hardware confirmation button. If a remote server receives a
prompt signed with such a keypair, it has the guarantee that this
prompt was displayed via the trusted screen and a user pressed
the hardware confirmation button in response to this prompt.

BiometricPrompt API Another crucial part of remote autho-
rization is the ability to authenticate a user to verify that it is a
legitimate user (and not, for instance, someone able to obtain
physical access to a device). Android accomplishes this feature
with the help of biometric authentication controlled by the TEE.

In this case, only the user whose biometrics are registered on
the device is considered the legitimate user.

As of Android 9, Android’s recommended API to use for
biometric authentication is the BiometricPrompt API [6]. The
BiometricPrompt API is used in conjunction with a keypair
stored within the TEE. This keypair can be used for signing
only upon successful biometric authentication. Whenever the
keypair needs to be used for signing, a biometric prompt is
displayed, asking the user to authenticate themselves biomet-
rically. The title and description of the biometric prompt can
be set using the BiometricPrompt.Builder class. At this
point, the key can be used once for signing with a previously
provided CryptoObject. This signature can then be verified
by the server with the guarantee that a legitimate user is authen-
ticated.

2.4 Threat Model
We assume that the adversary has completely compromised the
OS and has all root privileges. These include control of input,
output, and the code execution flow of any app.

Physical security is of paramount importance in mobile de-
vices as they are more easily accessible to adversaries due to
their portable nature. Hence, we also assume that the adversary
has sporadic physical access to the device. The adversary’s
physical access and the user’s physical access are mutually
exclusive. The adversary can physically access the device if
the user is not physically carrying the device. This can occur at
any random time when the user leaves the device unattended,
therefore, allowing the adversary to have physical access to it.
We consider the duration of the physical access by the adver-
sary to be no greater than a few minutes at a time. Furthermore,
we assume that there is a time gap between the user accessing
the device and the adversary accessing it, i.e., the adversary is
unable to press a hardware button immediately after the user
inputs their fingerprint.

We assume that the adversary has not compromised the code
or data within the TEE. In fact, exploits that could grant this
capability to the adversary are uncommon. From January 2020
till December 2021, there have been 453 Android CVE’s that
could result in an escalation of privilege but only 8 CVE’s
related to TEEs in Android [20].

The adversary does not have any control over the remote
server. Hence, we do not consider any attacks that involve
compromising the remote server directly.

Furthermore, we assume that the initial trust between the
Android device and the remote server has already been es-
tablished, i.e., the user was able to legitimately authenticate
themselves at least once on that device (usually done with login
credentials). Therefore, establishing the initial trust between
the device and the remote server is out of scope for this paper.
Consequently, attacks based on this lack of initial trust, like
cuckoo attacks [39], are also out of scope for this paper.

USENIX Association 31st USENIX Security Symposium 1563

In summary, we consider as a Trusted Computing Base
(TCB), the data stored, and the code running, on a remote
server and the TEE.

3 Motivation
Authorization involving mobile devices is becoming a neces-
sity. Regulations like the European Banking Authority’s Strong
Customer Authentication [13] have made it almost impossible
to process payments without using your mobile device. Finan-
cial applications that run on modern smartphones are ample,
and without secure authorization protocols in place, users could
suffer severe financial losses in the event of a security breach.
Even local authorization use cases such as controlling insulin
pumps using your smartphone [9] require that secure authoriza-
tion take place to avoid any overdose. Under our threat model,
for these authorizations to be secure, they have to use the TEE.
Therefore, there is a need for a TEE-based solution that can
handle all these forms of authorizations, and can be used in all
modern mobile devices.

In this section, we first conduct a large-scale market analysis
of Android apps to ascertain how apps in the market are using
TEE-enforced APIs. Next, we discuss the issues and limita-
tions of these TEE-enforced APIs. Lastly, we discuss possible
authorization protocols that use TEE-enforced APIs and their
flaws, which prevent them from fulfilling our goals.

3.1 TEE-enforced API’s Market Analysis
We conduct a large-scale analysis of existing apps on the
Google Play Store, using AndroZoo [25] to gather a dataset of
Android apps. To limit our dataset to prominent applications,
we used a web scraper to filter the apps based on their category
and number of installs. The categories chosen for filtering were
Business, Finance, Tools, Communication, and Medical. We
selected all apps that belonged to these categories and had at
least 1,000 installations on Google Play Store, resulting in a
dataset of 112,886 apps downloaded in January 2021.

As discussed in Section 2.3, there are three TEE-enforced
APIs relevant for authorization. Since Bianchi et al. [26] have
already investigated the usage of the FingerPrint API, we focus
our analysis on key attestation and Android Protected Confir-
mation APIs. The FingerPrint API is the deprecated version
of the BiometricPrompt API but still has a very similar imple-
mentation. Hence, the older analysis results are still relevant.

First, we gauge the number of apps that are attempting to use
these APIs. We use Apktool [19] to disassemble the apps into
smali code [22]. We then search the smali code for methods
necessary for the usage of these APIs. For key attestation,
we search for the method setAttestationChallenge. For
Android Protected Confirmation, we search for the method
setUserConfirmationRequired.

We manually analyze the apps further to see how the APIs
are being used. We decompile the apps using Jadx [10] and then
search and trace within the Java code for the methods to see how
they are used. We are interested in seeing what data is being

sent to or from a remote server. In case no communication
occurs with the server while these APIs are being used, we
check how these APIs are then used locally.

We only found 5 apps that use key attestation, and none
of them use it for remote attestation. The certificate chain
containing the attestation data is never sent to any remote server.
The apps are either checking the attestation data locally or are
using the attestation data to determine the state of the device
and display it to the user. Checking attestation data locally
defeats the purpose as a root attacker will be able to alter the
data to bypass any checks that use this attestation data as a
measure of the device’s integrity. We find no usage of Android
Protected Confirmation within our dataset.

The user study we conduct, as discussed in Section 7, sug-
gests that the lack of usage of these APIs is due to the complex
nature of their implementation. From our analysis, we conclude
that there is a need to provide developers with an easier way of
incorporating these APIs into their apps.

3.2 TEE enforced API’s Intrinsic Limitations
The Fake Prompt There is an intrinsic issue with the Biomet-
ricPrompt API, which lies in the fact that the prompt shown
to the user requesting for their biometric scan does not guaran-
tee that the key will be used for the purpose displayed on the
prompt. A biometric prompt like the one shown in Figure 2
(left) can be manipulated by a root attacker, making the user
think they are authorizing a certain action while the adversary
silently uses the key for their own purposes [41].

The Illegitimate User Android Protected Confirmation used
alone for authorization only ensures that a hardware button was
pressed in response to a certain message, but gives no assurance
of who pressed the button. A confirmation prompt like the one
shown in Figure 2 (right) is controlled by the TEE. The key
unlocked by pressing the hardware button can only be used
to sign the prompt displayed. However, pressing the hardware
button does not necessitate physical input from the legitimate
user, as anyone can press the button.

Everlasting Biometric We found that using the Biometric
Prompt to unlock a key for use with a CryptoObject results
in the key being unlocked as long as the CryptoObject is
not used. This means that if a user authenticates themselves
to a BiometricPrompt, the resultant CryptoObject can be
used long after the biometric input took place. A root attacker
can exploit this issue by delaying the signing process after
successful user authentication.

Overwriting Confirmation We found that a key requiring user
confirmation to be unlocked can only sign the last accepted
Confirmation Prompt. This is an issue because an accepted
Confirmation Prompt can be overwritten by another accepted
Confirmation Prompt. Even if a user accepts a Confirmation
Prompt, the attacker can stop that particular prompt from being
signed. The attacker can then display and accept a Confirmation
Prompt of their own choosing and sign that instead. Further-

1564 31st USENIX Security Symposium USENIX Association

more, the accepted Confirmation Prompt does not expire due to
time and is not bound to any particular key with any confirma-
tion timeout (i.e., the confirmation must have been done within
a certain duration of the signing). This results in an attacker
having the capability to set the accepted Confirmation Prompt
when they have physical access to the device and even use it
for future attacks due to the lack of any timeout mechanism.

3.3 Vulnerable Protocols
This section will discuss possible authorization protocols based
on the TEE-enforced APIs and their vulnerabilities.

Solitary Biometric Usage, Fake Prompt Attack A com-
mon protocol for authorization in Android is using Biomet-
ric Prompt alone. This protocol suffers from the Fake Prompt
issue. After the user has provided the biometric input for au-
thorization, the attacker can then sign any malicious prompt
without alerting the user. If the protocol involves using a server
generated nonce or timeout to avoid such attacks, then the root
attacker can exploit the Everlasting Biometric issue.

Solitary Confirmation Usage, Fake User Attack An alter-
native protocol for authorization is using Android Protected
Confirmation alone. This protocol suffers from the Illegitimate
User issue. An attacker wishing to authorize a malicious action
simply has to wait until they have physical access to the device
and can then press the physical button when prompted to accept
the malicious prompt.

Naive Combined Usage, Separation Attack The naive
method of using both APIs together in an authorization proto-
col is to use them in parallel with separate keys, one after the
other, to sign the same prompt and send both signatures back to
the server. Since there is no mechanism to ensure both signings
are done in an atomic manner (at the same time), each signing
only guarantees the security properties as are in the case of
solitary usage. Therefore, separate attacks can be carried out to
bypass the two signing mechanisms, identical to the attacks as
in the case of solitary usages.

For example, if the Android app used a Biometric Prompt be-
fore using a Confirmation prompt, the attacker can wait for the
user to provide the biometric input in response to a legitimate
Biometric Prompt. By exploiting the Everlasting Biometric
issue, the root attacker can stop the original signing from hap-
pening and instead pause the process till they have physical
access to the device. The root attacker will then generate a new
malicious request to the server. The already unlocked Biomet-
ric key can then be used to sign the malicious request. The
attacker can then provide the physical input for the confirma-
tion prompt. Using server generated nonces and timeouts does
not hamper this attack as the attacker can generate a new re-
quest to the server at the time of signing. Similarly, the attack
also works in the case when the Confirmation Prompt is used
before the Biometric Prompt.

Rectified Combined Usage, Timed Attack Another method
of combining BiometricPrompt API and Android Protected

Confirmation is to use them both with a single key to sign a
single prompt. The two prompts can be displayed in any order.
However, in this case, an attack is possible by exploiting the
Everlasting Biometric and Overwriting Confirmation issues.
A root attacker can pause the process after the biometric in-
put has been provided and wait till they have physical access.
Afterward, the attacker can generate a new malicious request
to the server, display a malicious confirmation prompt, accept
it using the physical button and then sign it using the key as
it has already been biometrically unlocked. Server generated
nonces and timeouts do not protect against this attack due to
the malicious request being made at the time of signing.

4 SARA Overview

In this section, we first discuss the goals and requirements of
our work. Then, we introduce our new authorization protocol,
which we use as the basis to implement a library that can be
used by developers within their apps.

4.1 Design Goals and Requirements
The first goal for our library is to be practical. This requirement
translates to two usability goals.

UG1: Developers who wish to perform remote authorization
in their apps should only need to have minimalistic knowledge
of the authorization framework to integrate it correctly into their
apps. Developers should also not worry about the complicated
cryptographic details that an average developer without any
security experience would have no knowledge about. To ensure
this property, the library should take care of all the intricacies
of the authorization process.

UG2: The library must be compatible with all modern An-
droid devices and be integrable within all existing and new
apps. To ensure this property, our library has to make use of
hardware features that already exist within devices, as well
as APIs that are already provided by the Android OS. Using
APIs that are provided by the Android OS ensures that the
library will work across Android devices regardless of the TEE
and code running inside the TEE. Our library has a minimum
requirement of Android 9 which means that 74% of existing
Android devices [17] can use our library. The only limitation
is that necessary hardware features, like a biometric scanner or
a TEE itself, must be available on the device. Since the APIs
are provided by the Android OS and the necessary hardware
features are recommended by the Android Compatibility Def-
inition Document [3], the number of devices that have these
hardware features is on the rise.

The second goal is that our library should provide a secure
form of remote authorization that can be achieved by current
Android devices. The library should both be resilient against
root attackers and verify the physical presence of the legitimate
user. In turn, to guarantee these two properties, we design our
library to achieve the following five security goals:

USENIX Association 31st USENIX Security Symposium 1565

Table 1: Fulfillment of security and practicality goals
Authorization Solution UG2 (No impractical OS or Hardware Modifications) SG3 (Secure UI) SG4 (Biometric Authentication)
SecurePay [31] ✗ ✓ ✗

Truz-Droid [44] ✗ ✓ ✗

Yubikey [18] (uses external hardware) ✗ ✓

SARA ✓ ✓ ✓

SG1: All authorized actions are signed by TEE backed keys
SG2: The server can attest to the state of the keys used for

signing.
SG3: The legitimate user is aware of the action they are autho-

rizing.
SG4: Physical presence of the legitimate user is verified at the

time of authorization.
SG5: The server can verify that the legitimate user knowingly

authorized an action.
As mentioned in Section 3.3, the existing Android TEE-

enforced APIs, when used in isolation or simple combinations,
have intrinsic issues that prevent them from achieving these
goals. Therefore, there is a need for a new remote authorization
protocol for Android devices that, while using the existing
APIs, can achieve the aforementioned security goals.

4.2 Comparison with Similar Efforts
We analyze previously published works to ascertain if they
can fulfill our design goals and requirements. Specifically,
we focused on SecurePay [31] and Truz-Droid [44]. These
two approaches are currently state of the art in the field, and,
in their evaluation, they show they are better than older pub-
lished works, such as TrustPay [45]. We also compare with
Yubikey [18] which is currently being used in the industry.

SecurePay [31] proposes securing payments by leveraging
the TEE to use the mobile device as a secure form of 2FA. Se-
curePay is composed of an Android library, as well as a Trusted
Application (TA) which resides inside the TEE. In SecurePay,
an encrypted transaction message is sent to the Android device
which can only be decrypted by the SecurePay TA. The Secure-
Pay TA then decrypts and displays the transaction details to the
user, using a trusted UI. The user can then verify the transaction
details and accept the transaction. SecurePay requires adding
a new TA inside the TEE. In the current Android ecosystem,
this is hard to accomplish in practice since only TAs signed
by OEMs are allowed inside the TEE. For this reason, Secure-
Pay violates UG2. Additionally, SecurePay does not verify the
identity of the user accepting the transaction on the trusted UI.
Therefore, under our threat model, it is possible that an attacker
is able to process illegitimate transactions if they have physical
access. Hence, SecurePay violates SG4.

Truz-Droid [44] suggests using a two-part solution. The first
part secures the user’s interaction with the device by providing
a secure keyboard that feeds the input directly to the TEE.
Moreover, Truz-Droid introduces a secure output screen that

allows the TEE to show information directly to the user. The
user can distinguish between the secure screen and the normal
screen with the help of a LED. To handle the secure inputs
and outputs inside the TEE, Truz-Droid requires a TA into
the TEE. Since it requires modifications to the Android OS
and hardware modifications to the device, Truz-Droid violates
UG2. Additionally, Truz-Droid does not authenticate users
using biometrics; hence it also violates SG4.

Yubikey [18] is one of the most popular hardware based
2FA authentication techniques [32] available on the market. To
authenticate themselves, the user makes use of hardware token
with an in-built finger touch sensor. Traditionally this sensor
guarantees physical presence, but it does not biometrically au-
thenticate the user. However, the newest available version of
Yubikeys also supports fingerprint authentication [1], hence sat-
isfying SG4. However, even though it does not require Android
or hardware modifications, this solution requires a separate
hardware token. For this reason, it partially violates UG2. Fi-
nally, Yubikeys do not offer any form of Secure UI, hence their
usage violates SG3.

Table 1 summarizes how these solutions fulfill our practi-
cality and security requirements. In the following sections, we
will prove that SARA fulfills all these requirements. To the best
of our knowledge, SARA is the only system that (1) can be
practically used in modern Android devices without requiring
any changes to hardware, OS or TEE code, and (2) is secure
within our threat model where root attackers can also have
limited physical access to the device.

4.3 SARA’s Protocol Design
We now introduce the design for our new authorization protocol
built on top of already existing Android APIs. The APIs have
to be used together in a cryptographically secure manner to
ensure that the legitimate user authorized the action. To this
aim, our protocol uses the concept of double signing.

We will now describe each of the steps that take place within
our protocol, as illustrated by Figure 3. The first two steps
only need to be executed once, while steps 3 and 4 need to be
executed for each authorized action.

Step 1 : Keypair Generation First, our protocol uses An-
droid’s KeyStore to create two asymmetric signing keypairs
on the client Android app. Android’s KeyStore uses the TEE
to store the keypairs, which accomplishes SG1. We generate
both of these keypairs in accordance with the key attestation
protocol. Both of them have a separate attestation challenge
that is sent by our server module. Furthermore, one of the

1566 31st USENIX Security Symposium USENIX Association

TEE Client App ServerUser

Protocol Setup

registerBioConfirm()

getInitialRegistration
Parameters()

Protocol Setup
Complete

Begin Authorization getInitial
AuthParameters()

Begin Timeout

callBioConfirm()

Display Biometric
Prompt

User sees Biometric
Prompt

Sign Prompt with
Biometric Key

Display Confirmation
Prompt

Sign (Prompt +
Signature) with

Confirmation Key

User sees Confirmation
Prompt

User provides
confirmation input

through a hardware
button

User provides biometric
input to a physical

scanner

verifyAuth
Signature()

Verify Timeout

Authorization Complete

4

2

1

3

Protocol Setup
(One Time Only)Biometric Keypair +

Confirmation Keypair
Generation

Extract Certificate Chains

parseCertificateChains()

API Interaction Internal Interactions? Protocol
Step No SARA API CALL Internal Process START/END Protocol SetupUser Interaction

Physical Input

Figure 3: Biometric Confirmation Protocol with SARA’s API interaction and internal processing handled by SARA

keypairs is made to be used with the BiometricPrompt API
(biometricKeypair). The other keypair is created to be used
in conjunction with the Android Protected Confirmation API
(confirmationKeypair).

Step 2 : Double Attestation To achieve SG2, our proto-
col attests both the created keypairs on the remote server in
accordance with the key attestation protocol available in An-
droid devices. Specifically, once the remote server receives the
certificate chains that correspond to both keypairs, our proto-
col analyzes the attestation data encoded in these chains. The
server then verifies that the separate attestation challenges for
the keypairs match the ones generated by our server module.

Our protocol ensures that attestation data from both cer-
tificate chains match since they come from the same device,
except for the part that gives detail on the key properties. For
the attestation to be successful, the attestation data must show
that both keypairs are stored in secure hardware and that the
device is not compromised. Furthermore, the remote server
checks the attestation data to ensure that one key can only be
used with biometric authentication, while the other key can
only be used when a confirmation input is provided in response
to a confirmation prompt.

Step 3 : Double Signing To achieve SG3 and SG4, our
protocol needs to verify that the legitimate user is aware of
the action they are authorizing and provides a physical confir-
mation. Therefore, for every action that requires authorization,
both keypairs are used to sign a prompt that summarizes the
action being authorized (i.e., Are you sure you want to send $50
to Alice), as well as a nonce to protect against replay attacks.

Both the prompt and the nonce are generated by our server
module. After the prompt and nonce are sent to the client app,
a timeout is started on the server.

More precisely, the signing is performed the following way:

intermediateSignature = sign(prompt+nonce,
biometricPrivateKey)

finalSignature = sign(prompt+nonce+intermediateSignature,
confirmationPrivateKey)

where sign() signs the first argument using the private
key specified in the second argument. biometricPrivateKey
is the private key part of biometricKeypair and confir-
mationPrivateKey is the private key part of confirmation-
Keypair.

The biometricPrivateKey is used to sign the prompt
displayed by the BiometricPrompt API. Similarly, confir-
mationPrivateKey is used to sign the prompt displayed by
using Android Protected Confirmation. Due to this double sign-
ing, our protocol gives a guarantee to the remote server that
the user has both seen the prompt and biometrically authenti-
cated. The double signing along with the server timeout ensure
that an attacker cannot exploit the Everlasting Biometric or the
Overwriting Confirmation issues. The confirmation fulfills the
requirement for SG3 by ensuring the user sees the action they
are authorizing. The biometric authentication achieves SG4 by
verifying the user is legitimate and present, through a physical
biometric input.

Step 4 : Signature Verification To achieve SG5, our pro-
tocol sends back the prompt signed by both keypairs to the

USENIX Association 31st USENIX Security Symposium 1567

server module along with both signing outputs. The server
first ensures that the signatures were received within the time-
out limit. We then verify both signatures using the certificate
chains that were received by the remote server in Step 2 . The
verification is performed in the following way:

verify(finalSignature, prompt+nonce+intermediateSignature,
confirmationCertificateChain)

verify(intermediateSignature, prompt+nonce,
biometricCertificateChain)

where verify() verifies that the first argument is a valid
signature of the second argument using the certificate chain
specified in the third argument. biometricCertificate-
Chain is the public certificate chain of biometricKeypair
and confirmationCertificateChain is the public certifi-
cate chain of the confirmationKeypair. Upon successfully
verifying both signatures, our protocol ensures that the legiti-
mate user has confirmed the action and SG5 has been achieved.

4.4 Alternative Protocol
Prior to Android 11, we only had two options. Either biometric
authentication was required for every use of the key, or a va-
lidity duration could be set for the key, in which case all forms
of authentication can be used, such as a pin or password. The
latter option does not enforce the use of biometric authentica-
tion and can be bypassed using any authentication method such
as a screen lock as long as it is done within the set time limit.
Even though biometric authentication for every use of the key
enforces the need for biometric authentication, it does not set
any time limit in which the signing must take place after the
authentication (Everlasting Biometric).

Starting from Android 11, we could use the new method se-
tUserAuthenticationParameters to enforce biometrics as
well as set a time limit for the authentication. Using this method,
we can create a single keypair in Step 1 of Figure 3 to be
used with both BiometricPrompt API and Android Protected
Confirmation API. The time limit, combined with a server gen-
erated nonce and timeout, is able to overcome the Overwriting
Confirmation and Everlasting Biometric issues. However, since
the method is not backward compatible with previous Android
versions, SARA does not use this protocol. SARA’s protocol
allows more Android devices to perform secure authorization
as its minimum requirement is Android 9. As shown ahead in
Section 7, even with the Android 11 approach, it is not trivial
for developers to implement it. Furthermore, without knowing
about the issues we highlight in this paper, developers are un-
likely to try and avoid these issues by using methods such as
setUserAuthenticationParameters.

5 Implementation
In this section, we present the library we developed, which
implements the remote authorization protocol as described in
Section 4.3. The library is divided into two parts: An Android
library package and a server module. First, we demonstrate

how developers can use the library within their own apps. Then,
we discuss the internal workings of our library and how our
implementation follows the protocol outlined in Section 4.3.

5.1 SARA’s API Usage
SARA’s API uses the existing Android APIs to implement the
authorization protocol discussed in Section 4.3. To use SARA
to implement the authorization protocol, changes need to be
made on both the server and the Android app. Listing 1 shows
an example of how the SARA’s API can be used by developers
within the remote servers for their Android apps. Listing 2
shows an example of how the SARA’s API can be used by
developers within their Android apps. To use SARA’s API on
the server side, the developer must do the following:

Initialize AttestationServer: To start off, the developer
initializes an instance of AttestationServer.

Setup Protocol: To set up the protocol for a certain user,
the developer must call the method getInitialRegistra-
tionParameters on AttestationServer. As an argument,
this method requires a unique identifier for the user the protocol
is being set up for. The method returns registration parameters
that must be sent to the client Android app. The developer then
must call the method parseCertificateChains on Attes-
tationServer. This method requires the unique user identifier
as well as the certificate chain received from the client Android
app as arguments. The method returns true if the protocol
has been set up successfully.

Authorize Action: To authorize an action for a certain user,
the developer must call the method getInitialAuthParame-
ters on AttestationServer. As an argument, this method
requires a unique identifier for the user. The method returns
authorization parameters that have to be sent to the client An-
droid app. The developer then has to call the method veri-
fyAuthSignature on AttestationServer. As arguments,
this method requires the unique identifier for the user as well
as the signed prompt received from the client Android app. The
method returns true if the action is authorized successfully.
The developer has to inform the client Android app of this
success.

To use SARA’s API on the Android app, a developer needs
to perform the following steps:

Initialize AttestationController: To start off, the devel-
oper initializes an instance of AttestationController.

Setup Protocol: To setup the use of the protocol, the devel-
oper must call the method registerBioConfirm on Attes-
tationController. As an argument, this method requires a
reference to the current Android context and the registration
parameters received from the server. The method returns the
certificate chains that have to be sent to the server.

Authorize Action: To authorize an action, the developer
must call the method callBioConfirm on Attestation-
Controller. As an argument, this method requires a reference
to the current Android context and the authorization parameters
received from the server. The method returns the signed prompt

1568 31st USENIX Security Symposium USENIX Association

def ServerCode()
{

#Access library class
myAS = AttestationServer()

#Setup authorization protocol for user X (only once)
regParams = myAS.getInitialRegistrationParameters(X_UniqueID)
#Send regParams to Android client app
#Receive certChains from Android client app
myAS.parseCertificateChains(X_UniqueID,certChains)
#Returns true if authorization protocol has been setup

#Authorize action Y for user X
authParams = myAS.getInitialAuthParameters(X_UniqueID, Y)
#Send authParams to Android client app
#Receive signedPrompt from Android client app
myAS.verifyAuthSignature(X_UniqueID, signedPrompt)
#Returns true if authorization is successful

}

Listing 1: Server code snippet to use SARA

public void AndroidCode()
{

//Access library class
myAC = new AttestationController();

//Setup authorization protocol (only once)
//Receive regParams from server
String certChains = myAC.registerBioConfirm(mContext,regParams);
//Send certChains to server

//Authorize action
//Receive authParams from server
String signedPrompt = myAC.callBioConfirm(mContext,authParams);
//Send signedPrompt to server

}

Listing 2: Android code snippet to use SARA

that has to be sent to the server. The developer has to have the
app wait for a confirmation message from the server to indicate
the action has been authorized successfully.

5.2 Android Library Implementation
We implemented the client part of our protocol in an open-
source Android library that developers can easily plug in into
their Android projects. We implement the protocol using APIs
that are offered by modern Android versions (Android 9.0+).

Keypair Generation: To create the keypairs in accor-
dance with Step 1 of our protocol, we use KeyGenPa-
rameterSpec.Builder with the purpose argument set as
Sign+Verify. We refer to the keypair to be used with Bio-
metricPrompt API as the biometric keypair and the keypair
to be used with Android Protected Confirmation as the con-
firmation keypair. We use the methods of KeyGenParame-
terSpec.Builder to set the properties for our keypairs. The
properties we use for both the keypairs are listed in Table 2.

Attestation challenges are received from the server, which
ensures that the keypair was created in response to the server’s
request. Furthermore, the biometric keypair has the validity
duration for authentication set to −1 to ensure it can only be
used with BiometricPrompt API. If someone registers their

Table 2: Key properties for the Biometric Keypair and the
Confirmation Keypair

Keypair Property Biometric KP Confirmation KP

AttestationChallenge From Server From Server

Digests SHA256 SHA256

SignaturePaddings RSA-PSS RSA-PSS

UserAuthenticationRequired ✓ ✓

InvalidatedByBiometricEnrollment ✓ ✗

UserConfirmationRequired ✗ ✓

UserAuthenticationValidityDuration -1s 120s

StrongBoxBacked ✓ ✓

biometrics after a key has already been created for biometric
use, the existing key gets invalidated. We set the confirmation
keypair to require user confirmation to ensure it is only usable
with Android Protected Confirmation. Once the properties are
set, we use KeyPairGenerator with RSA to build the keypair.

Certificate Chain Extraction: Step 2 of our protocol
requires that the certificate chains of our keypairs be sent to the
server. To extract these certificate chains, we use KeyStore
object’s method getCertificateChain. This returns a chain
of X.509 certificates. We then encode the certificate chain into
a single string that can be sent to the server.

Biometric Prompt Display: For Step 3 of our proto-
col, we first display a biometric prompt. We ensure that
biometrics have to be used for this prompt and the user
cannot revert to using device credentials such as a pin or
password to authenticate to the prompt. We use a Signa-
ture object with SHA256withRSA\PSS. We then call the
Prompt.authenticate method to display the prompt and
pass our Signature object as an argument. This allows us to
sign using that object later.

Biometric Signing: For the next part of Step 3 of our pro-
tocol, we sign the biometric prompt using our biometric keypair.
We override the onAuthenticationSucceeded method. The
method has a result as an argument which contains our Signa-
ture object. We use the update method to add our prompt
and nonce to the Signature object, and then we use the sign
method to complete the signing.

Confirmation Prompt Display: Continuing with Step 3
of our protocol, we display a confirmation prompt to the
user. Within the overridden onAuthenticationSucceeded
method, we use the result of our signing, concatenated with
the prompt and nonce, as extraData in Confirmation-
Prompt.Builder. We then use the method presentPrompt
to display the prompt.

Confirmation Signing: Lastly, for Step 3 of our proto-
col, we sign using the confirmation keypair. We override the
onConfirmed method for the confirmationCallback. This
method has as an argument dataThatWasConfirmed. The ar-
gument dataThatWasConfirmed contains both the prompt as
well as the extraData. We use a Signature object with

USENIX Association 31st USENIX Security Symposium 1569

SHA256withRSA\PSS. We use the update method to add
dataThatWasConfirmed to the Signature object, and then
we use the sign method to complete the signing and send the
result to the server.

5.3 Server Module Implementation
We implement our server module using Python 3. The server
module can be imported and used within any existing Python
server. The implementation is based on the Android guide-
lines [16] for the remote server.

Attestation Challenge Creation: For Step 1 of our proto-
col, our server module creates an attestation challenge for each
keypair. These attestation challenges are then sent to the client
Android app to be used for keypair creation.

Certificate Chain Verification: We begin Step 2 of our
protocol by verifying the certificate chains received from the
client Android app. First, we verify that the root certificates of
the certificate chains are one of the Google certificates [16]. If
the root certificates are not one of the Google certificates, then
the keypairs are not stored within the TEE and the verification
fails. Second, we verify that none of the certificates in the
chains are part of Google’s certificate revocation list [2] as
they pose a security threat; hence, the verification fails. Finally,
we verify the certificate chains themselves. We verify that
the root certificate is self-signed, and we verify the following
certificates using the preceding certificate in the chain. We use
the OpenSSL module to verify the certificate chains.

Attestation Data Verification: Continuing with Step 2
of our protocol, our server module checks the attestation data
embedded within the certificate chain. We implement our own
ASN.1 parser to extract the attestation data from the certificate
chain. We then verify that the attestation data contains the
expected properties of the keypairs. The server module also
checks the attestation data to verify the state of the device by
checking if the VerifiedBootState value is set to Verified.

Prompt Preparation: For Step 3 of our protocol, our
server module creates the prompt that is shown to the user.
Furthermore, a nonce is also created using the Random module
to be sent alongside the prompt to the client Android app.
The timeout is started at this point by storing the current time.
The duration of this timeout has to allow ample time for user
interaction as well as client-side processing. Furthermore, the
duration of the timeout must not exceed the duration of the
time gap between the legitimate user access and the adversary
access, as discussed in the threat model. Since screen timeout
duration reflects the time a user is inactive before the device
sleeps and locks, we use Android’s screen timeout durations
as a reference point. The median option for screen timeout in
the latest Android versions is 2 minutes. Therefore, we set the
duration of this timeout to be 2 minutes.

Signature Verification: For Step 4 of our protocol, our
server module verifies the signatures received from the client
Android app. We first check the time to see if we have received
the signatures within the timeout limit. The server module

Accomplice

User

Confirmation Input

Server-Client Channel

Biometric Input

Biometric Output

User-Client Channel

Confirmation Output

Client

2

Server 1

1 3

4

2

5

6

3
4

5
6

Adversary
Access

Figure 4: ProVerif Model with the channels that are used by
the processes

receives dataThatWasConfirmed and the confirmation sig-
nature. First, we verify that dataThatWasConfirmed has been
signed by the confirmation keypair, using the corresponding cer-
tificate chain and signature. Then, we extract the extraData
from dataThatWasConfirmed and verify that it includes the
prompt, nonce as well as the biometric signature. Finally, we
verify that the prompt and nonce have been signed by the
biometric keypair, using the corresponding certificate chain
and signature. Upon successful verification, our server module
guarantees that the user authorized the action.

6 Verification using ProVerif
We evaluated the security aspect of SARA’s authorization pro-
tocol through an automated cryptographic protocol verifier
called ProVerif [27]. In addition, we used ProVerif to verify our
hypotheses regarding the weaknesses of the BiometricPrompt
API and the Android Protected Confirmation APIs being used
in vulnerable protocols. The entire ProVerif code is available
in our public repository [21].

ProVerif uses “processes” to represent the different actors in
a protocol. For instance, a server and a client will be modeled
as two separate processes. These processes communicate with
each other using “channels”. Channels can be open (accessi-
ble by an attacker) or closed. A channel can be two-way or
one-way. To verify security properties, ProVerif uses “queries”
and “events”. Queries are used to assess if an attacker can ac-
cess certain information. Events are triggered when a process
reaches a certain stage. Queries are also used to verify how
events are triggered with respect to other events. ProVerif uses
the Dolev-Yao model [30] to simulate the abilities of the adver-
sary. That means the attacker can read, intercept, and write its
own messages over channels.

6.1 Model Design
Figure 4 illustrates our ProVerif model for remote authoriza-
tion. Our model uses 4 processes: Server, Client, User,
and Accomplice. The Server and Client processes fol-
low our authorization protocol by simulating a remote server
and a client Android app. Even though there is no process
representing the TEE itself, the Client process is designed
in a manner where the attacker is only able to access data and
channels that are not secured by the TEE. This means that the

1570 31st USENIX Security Symposium USENIX Association

Table 3: ProVerif queries and corresponding security goals and implications when using SARA for authorization

ProVerif Query Security Goal Security Goal
Achieved

Security implication when
not achieved

1
query f:bitstring; inj-event(serveraccepts(f)) ==>
(inj-event(userSeesPrompt(f)))

The legitimate user sees the action
the server performs (SG3)

Yes
Attacker can authorize an action
the legitimate user is unaware of.

2
query f:bitstring; inj-event(serveraccepts(f)) ==>
(inj-event(userAuthenticated(f)) && inj-event(userConfirmsPrompt(f)))

The legitimate user physically authorizes
the action the server performs (SG4)

Yes
Attacker can authorize an action
the legitimate user did not approve.

3
query a:biosskey,b:confsskey,e:biospkey,d:confspkey;
inj-event(serverconfirms(e,d)) ==>
(inj-event(biosigned(a)) && inj-event(confsigned(b)))

Server has a guarantee that the action has
been authorized by the legitimate user (SG5)

Yes
The server performs an action that was
not authorized by the legitimate user.

Client process is separated into a secure world (representing
the TEE) and a non-secure world. Therefore, we did not need
to create a separate process representing the TEE. Both the
Server and the Client processes are running at all times
in the model. The User process is modeled to behave like a
legitimate user. The Accomplice process represents a physi-
cal adversary that provides the physical confirmation input in
response to all prompts. The User/Accomplice interactions
are mutually exclusive. We assume that if the user is present,
then a physical attacker cannot be present at the same time and
vice versa. Hence, our model does not allow the User and
Accomplice processes to run simultaneously.

The Server-Client channel represents the network be-
tween the client app and the remote server. The User-Client
channel represents the touch screen. This serves as the primary
channel for user interaction with the app. Both these channels
are modeled as two-way open channels.

The Biometric Output channel represents the prompt
that is displayed at the time of biometric authentication. This
is not controlled by the TEE and the attacker has complete
access to this channel. The Confirmation Output channel
represents the prompt that is displayed on the secure UI. This
is under the control of the TEE. However, since the prompt is
provided by the app, it can be manipulated by a root attacker.
Hence, these channels are modeled as one-way open channels.

The Biometric Input channel represents the biometric
scanner. This is a physical input directly to the TEE and even
a root attacker cannot provide this input. The Accomplice
process does have access to this channel but cannot provide the
correct input. The Confirmation Input channel represents
the hardware confirmation button. This is also a physical input
that goes directly to the TEE and hence it is inaccessible to
a root attacker. The Accomplice process has access to this
channel and can provide the correct input to this channel as
anyone can press the button. We model these channels as one-
way closed channels. Even though the attacker cannot provide
inputs on these channels, a root attacker can perceive that inputs
have been given. To model this aspect, the Client process
sends out the received inputs into an open channel, simulating
an attacker accessing them.

To model the timeouts, we use ProVerif’s “Phases”. Phases
in ProVerif allow us to separate information. Any data in one
phase cannot be used in another phase. This is similar to a
timeout in the sense that once the duration of the timeout ex-

pires, the corresponding data (i.e., a signature) is no longer
valid. In our model, each phase represents the duration of one
timeout. We use three phases in our model. In the first phase,
the Accomplice process is running. In the second phase, the
User process is running. Lastly, in the third phase, the Accom-
plice process is running again. The Accomplice process
runs before and after the User process to simulate that an
attacker can have physical access to the device before and after
the actual user makes use of the device.

6.2 Verifying SARA Security
We use the ProVerif model to verify the security properties of
our SARA’s authorization protocol, as shown in Table 3. The
model simulates the protocol setup by creating the keypairs,
sending the certificate chains, and performing the attestation.
Keys in ProVerif are inaccessible to the attacker and therefore,
mimic the behavior of keys inside a TEE (SG1). The model as-
sumes that the attestation data retrieved by the server from the
certificate chain is acceptable since, otherwise, the remote au-
thorization procedure cannot proceed (SG2). We use ProVerif
queries to assert the correspondence of certain events to verify
that our security goals are achieved.

The event userSeesPrompt is triggered after the confir-
mation prompt is received by the User process. The event
userAuthenticated is triggered after valid biometric input is
given by the User process. The event userConfirmsPrompt
is triggered after confirmation input is given by the User
process. The event serverConfirms is triggered after the
Server process verifies the signatures. The event server-
Accepts is triggered when the Server process accepts the
authorization for an action.

Query 1: If the event serverAccepts is triggered for a
certain authorization request then that can only happen if and
only if the event userSeesPrompt was triggered for the same
authorization request. This verifies that the legitimate user is
aware of the action that is authorized (SG3).

Query 2: If the event serverAccepts is triggered for a
certain authorization request then that can only happen if and
only if the event userAuthenticated, and the event user-
ConfirmsPrompt were triggered for the same authorization
request. This verifies that the legitimate user authorized the
action using a physical input (SG4).

USENIX Association 31st USENIX Security Symposium 1571

Query 3: If the event serverConfirms is triggered for a
certain confirmation public key and biometric public key then
that can only happen if and only if the event confsigned was
triggered with the corresponding confirmation private key and
the event biosigned was triggered with the corresponding
biometric private key. This verifies if the server has a guarantee
the legitimate user authorized the action (SG5).

The result from ProVerif shows that all our queries are true,
and no attack is possible.

6.3 Attacks on Incomplete Protocols
To further corroborate our design, we use our ProVerif model
to show possible attacks on the vulnerable protocols discussed
in Section 3.3

First, we removed TEE-enforced user confirmation from our
protocol and used ProVerif (as shown in Appendix, Table 8)
to prove that an attack is possible when the Solitary Biomet-
ric protocol is used. Second, we removed TEE-enforced user
confirmation from our protocol and used ProVerif (as shown in
Appendix, Table 9) to prove an attack is possible when the Soli-
tary Confirmation protocol is used. Next, we disjoined the two
signing operations and performed them separately. We used
ProVerif (as shown in Appendix, Table 10), to prove an attack
is possible when the Naive Combined protocol is used. Lastly,
we conjoined the two signings to signify a single key being
used. We used ProVerif (as shown in Appendix, Table 11), to
prove an attack is possible when the Rectified Combined proto-
col is used. In all the four cases, ProVerif was able to generate
a counterexample, showing a possible attack that might occur
if the tested variation of the protocol was used.

7 Usability and Practicality
In this section, we describe the evaluation of SARA’s practical-
ity, gauged by a user study involving Android developers. The
goal of the user study was to answer the following research
questions:

RQ1: Does using SARA make it easier for developers to use
Android’s TEE-enforced APIs?

RQ2: How long does it take for a developer to learn how to
use SARA?

The results, as described below, show that the use of our
library significantly reduced the time and effort consumed for
implementing a secure payment application as compared to
implementing it with the TEE-enforced APIs directly.

7.1 Participants Recruitment
We conducted a qualitative comparative user study to evaluate
the practicality of our library compared to using existing TEE-
enforced APIs. For this purpose, we obtained approval from
our university’s IRB and recruited participants by advertising
on internal university/department groups and mailing lists. We
designed a questionnaire consisting of 10 Android develop-
ment related questions (see Appendix, Table 6) to gauge the

expertise level of the participants. We assigned three differ-
ent expertise levels to the participants based on the number
of questions they correctly answered (3-5 as beginner, 6-7 as
intermediate, and 8-10 as expert). Prospective participants with
a score less than 3 were excluded as we deemed them not to
be Android developers). In total, we recruited 14 participants,
which included 5 beginners, 4 intermediates, and 5 experts.
While having a knowledge requirement for participation af-
fected the number of participants recruited, we believe these
conditions were necessary to obtain meaningful conclusions
from the user study. Every participant was compensated for the
completion of the study.

7.2 Experiment Design
Each participant was given access to a skeleton Android pay-
ment application. The participants were asked to integrate An-
droid Protected Confirmation with key attestation and biomet-
ric authentication into the skeleton application by performing
two tasks i.e., Task-A: using the native Android APIs and
Task-B: using the SARA library. Furthermore, we also asked
them to implement related server-side functionality in a sample
server-side code provided alongside the application.

We asked each participant to perform both tasks and the time
limit to complete each task was set to 105 minutes. Given the
complexity of implementing the desired functionality with the
native APIs, we divided the implementation of each task into
three subtasks to evaluate participants’ progress in each task.

In Subtask-1, we asked the participants to create a key-
pair(s) needed to integrate Android Protected Confirmation in
the application along with biometric authentication. Subtask-
2 asked the participants to display a confirmation and biomet-
ric prompt corresponding to the payment request made by a
user. Subtask-3 required them to verify the keypair(s) on the
server side and ensure that the attestation data showed that the
keypair was generated by secure hardware and had the requisite
properties.

For each subtask, the code sections that needed to be imple-
mented were clearly marked in the skeleton code. In order to
ensure that the participants spent ample time attempting the
server side subtask (Subtask-3), we asked the participants to
spend the last 35 minutes of the allotted time for each task
on Subtask-3, in case they could not complete the first two
subtasks. This was necessary to evaluate how developers deal
with server side code when implementing such protocols. We
allowed the developers to use either Java or Python when at-
tempting Subtask-3.

During the experiment, the participants could consult any on-
line resources. Additionally, we provided links to the Android
documentation and asked the participants to consult the official
Android training articles on key attestation and user confirma-
tion to complete the tasks. To effectively compare the learning
times for the two tasks, we also provided the documentation
for our library for completing Task-B.

1572 31st USENIX Security Symposium USENIX Association

Table 4: Summary of the subtask completion results

Completed after 90 minutes Task-A Task-B

Subtask-1:
Successfully created the keypair(s) with the
required properties

0/14 14/14

Subtask-2:
Successfully created the confirmation prompt and
the biometric prompt

0/14 14/14

Subtask-3:
Successfully attested the keypair(s) on the server 0/14 14/14

Since the two tasks required implementing the same func-
tionality, some of the knowledge and understanding about the
implementation gained in the first task could decrease the dif-
ficulty level of the second task. To remove such bias, we ran-
domly selected half of the participants to perform Task-A first
and the other to perform Task-B first.

At the end of the experiment, the participants were asked to
complete a survey with questions about their overall experience
with the two tasks. This survey collected information about the
developer’s preferences, ease of usage, learning overhead and
their personal feedback concerning the two tasks. The survey
also included the System Usability Score [28] questionnaire
for both tasks to evaluate SARA and the Native APIs usability.

7.3 Results
Usability (RQ1) We checked the implementation of the partic-
ipants to verify if they successfully completed a subtask. Upon
successful completion of a subtask, we also measured the time
it took for them to complete the subtask. Table 4 presents the
number of participants that completed the three subtasks within
the given time. There is a stark difference between the com-
pletion rates for the subtasks with the Native APIs and SARA.
All the participants were able to complete all three subtasks
using SARA within the allotted time frame. In contrast, within
the same time frame, none of the participants were able to
complete any subtask using the Native APIs.

We performed a Wilcoxon signed rank test [42] on the sub-
task completion time with the null hypothesis that the comple-
tion time for subtasks using the Native API and SARA are equal.
In cases where participants could not finish a subtask, we used
the total available time (i.e., 35 minutes) as the user’s comple-
tion time. We compared the task completion time for the Native
API and SARA, and we observed a p-value of 0.0005 < 0.05.
Thus, we reject our null hypothesis and conclude that the task
completion time with SARA is lower, demonstrating its practi-
cality.

Participants’ responses to the survey questions (summarized
in Table 5), show that 93% of the participants had a positive ex-
perience with using SARA, while 0% had a positive experience
with the Native APIs. All the participants agreed that it was
easier to implement the given task using SARA and expressed
a preference to use SARA over the Native API in their own

Table 5: Summary of the survey results of the user study
Evaluation of the Native APIs
Please rate your experience trying to implement Task-A

1 or 2 (Very Complicated) 13/14

3 1/14

4 or 5 (Very Straightforward) 0/14

Evaluation of SARA’s API
Please rate your experience trying to implement Task-B

1 or 2 (Very Complicated) 0/14

3 0/14

4 or 5 (Very Straightforward) 14/14

Evaluation of the Native API Documentation
Please rate the complexity of the documentation for Task-A

1 or 2 (Very Complicated) 12/14

3 0/14

4 or 5 (Very Straightforward) 2/14

Evaluation of SARA’s API Documentation
Please rate the complexity of the documentation for Task-B

1 or 2 (Very Complicated) 2/14

3 0/14

4 or 5 (Very Straightforward) 12/14

Learning Overhead
In your experience, what was the difference in time taken to learn the

usage of both APIs?

Native APIs took long/very long 14/14

Equal time 0/14

SARA’s API took long/very long 0/14

Ease of Implementation
In your experience, which of the two tasks you just performed was easier

to implement?

Task-A 0/14

Both were equally difficult 0/14

Task-B 14/14

Developer Preference
If you were to implement this task within your own application, which

method would you prefer to use.

Use SARA’s API 14/14

Use the Native APIs 0/14

applications. Based on the participants’ responses (as shown in
the Appendix, Table 7), the System Usability Score (SUS) [28]
for the Native API was only 11.61 as compared to SARA’s
score of 95.18. Generally, a system with a SUS score above 68
is considered above average [12]. Therefore, we can conclude
that SARA is highly usable.

Learning overhead (RQ2) Participants could access online
resources, including Android documentation, while implement-
ing the task with the Native APIs (Task-A). However, in the
case of SARA (Task-B), the participants could only use the pro-
vided SARA’s documentation as a reference. Despite this, all

USENIX Association 31st USENIX Security Symposium 1573

participants found that the time taken to learn the usage of the
Native APIs as compared to SARA was much longer. Further-
more, only 14% of the participants felt that the documentation
for SARA was complicated, whereas 86% of the participants
felt that the Native API documentation was complex.

8 Performance Evaluation
In this section, we evaluate the performance of the implemen-
tation of our authorization protocol within the Android library.
The evaluation is conducted on a Pixel 3a with Android 11. We
divide the protocol into two parts: the initial registration phase
and the per-authorization phase.

The initial registration phase consists of keypair generation
and certificate chain extraction. The overhead of these pro-
cesses (averaged over 100 trials) is 12.29 seconds with a stan-
dard deviation of 3.82 seconds. The vast majority of this time
is spent on the creation of the keypairs themselves as we store
the keypairs within the StrongBox [14]. Specifically, more than
99% of this time was spent calling just one method: KeyPair-
Generator.generateKeyPair. This method takes only 1.05
seconds per keypair generation if StrongBox is not used. We
speculate that the StrongBox internally requires a significant
amount of processing time to create the keypairs and that, in
addition, there could be a communication delay between the
main chip and the StrongBox chip. The usage of StrongBox to
store the keys is, however, unavoidable as Android Protected
Confirmation requires using a keypair stored within the Strong-
Box. We note that this is a one-time process that takes place
in the background when the authorization protocol is enabled.
Therefore, this overhead will not have a major effect on the
user’s experience of an app using SARA.

The per-authorization phase consists of the creation and dis-
play of the prompts, user’s biometric and confirmation input,
and the two signings. The user input times vary between users;
therefore, we focus on the prompts and the signing for measur-
ing time overhead. The overhead of these processes (averaged
over 10 trials) is 1.76 seconds with a standard deviation of
30 milliseconds. This time is negligible compared to the time
needed for a user to interact with the prompts.

9 Limitations and Discussion
This paper focuses on implementing root-resilient end-to-end
remote authorization in Android devices using TEE-enforced
APIs. However, other popular mobile ecosystems like Apple
have their own versions of these APIs. Contrasting the usage
of these APIs across platforms, and developing a solution that
is compatible with non-Android devices is the principal focus
of our future work.

Our solution relies on presenting two prompts for the user
to confirm in order to authorize an action. However, this solu-
tion only works if the user can be trusted to correctly identify
that both prompts are equivalent. If the user only verifies the
biometric prompt and does not verify the confirmation prompt

before providing the confirmation input, then a root attacker
can take advantage of this oversight to authorize an arbitrary
action. We plan to conduct a user study to determine the effect
of this human-induced vulnerability.

SARA includes a server module to allow developers to im-
plement the protocol easily. However, this module is currently
only for Python. We plan to create server modules for other
popular languages such as Java.

The new authorization protocol gives us the opportunity to
use regular mobile devices as a form of biometric 2-Factor Au-
thentication. We plan to compare our protocol to other various
modes of 2-Factor Authentication to gauge the efficacy of their
security as well as their ease of use.

10 Related Work

The issue of remote authorization has been tackled by both
industry and academia. However, these works usually use the
TEE to secure only the individual channels that are required
for authorization (Figure 1).

TEE-enforced User Interactions. Several existing academic
works aim to secure the user interactions by utilizing a TEE.
TrustUI [34] performs color and keyboard randomization by
leveraging TrustZone to provide a trusted UI on an untrusted
device. DroidVault [35] ensures secure input and display by
providing APIs for keyboard and display that utilize ARM
TrustZone. Light-SPD [43] emulates an SPD (Secure Per-
sonal Device) by utilizing TrustZone on boards with ARM.
TrustOTP [40] provides users with an OTP (One-Time Pass-
word) secured by TrustZone using GUI that is also secured by
TrustZone. Using TrustZone ensures that the user is provided
with a secure OTP even on a malicious OS. TrustPAY [45]
utilizes TrustZone to provide the user with a secure GUI, key-
board, and mouse for making payments on an untrusted OS.
VeriUI [36] provides users with secure login interfaces by gen-
erating them using a WebKit engine from within the TrustZone.
Akowuah et al. [24] present an SQLite Database secured by
TrustZone. Their framework enables users to securely edit an
SQLite Database on an untrusted device by leveraging TEE
for data encryption and showing keyboard. TruWalletM [29]
provides a password manager backed by TrustZone. TruWal-
letM also provides a User Interface secured by the TEE. VBut-
ton [33] leverages TrustZone to provide the user with secure
UI and secure input, and it allows the server to attest to the
authenticity of the user action. BitE (Bump in the Ether) [37]
proxies user input through a mobile device using encrypted
tunnels. Oprea et al. [38] proposed using PDAs as a form of
secure input to untrusted terminals.

Samsung Knox [11] provides hardware-backed storage for
data by leveraging TrustZone on Android devices. It also han-
dles Biometric authentication, which can be used to enforce
2-Factor Authentication. However, Samsung Knox is only avail-
able for certain Samsung devices [7].

1574 31st USENIX Security Symposium USENIX Association

TEE-enforced Server Communication DroidVault [35] pro-
vides a mechanism for storing and processing sensitive data
from a remote server on an untrusted Android device. Droid-
Vault leverages TrustZone to prevent end-user from directly
accessing sensitive data. TrustPAY’s [45] framework allows
users to make privacy-preserving transactions with a remote
service. TruzCall [23] utilizes TEE to provide secure VoIP on a
compromised device. TruWalletM [29] splits the SSL channel
with the server into a secure and a non-secure channel. The
secure channel is backed by TEE and used for communicat-
ing only sensitive information like authentication tokens and
passwords.

11 Conclusions
This work presents the first practical implementation of TEE-
enforced root-resilient remote authorization in Android devices.
We extensively evaluated our work with both a user study and a
formal cryptographic model. Our results showed that not only
is SARA more secure as compared to the existing native API,
but it is also easier to use. Hence, we believe that SARA should
be used for all forms of authorization in Android devices and
hope that Android will integrate the SARA’s protocol as part
of its official API.

Acknowledgments
This material is based upon work supported in part by
the National Science Foundation (NSF) under Grant No.
CNS-1949632 and the Google’s ASPIRE Award. Any opinion,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the NSF or Google.

References

[1] YubiKey Bio. https://www.yubico.com/products/
yubikey-bio-series/, 2020.

[2] Android Certificate Revocation List. https://android.
googleapis.com/attestation/status, 2021.

[3] Android Compatibility Definition Document. https:
//source.android.com/compatibility/cdd, 2021.

[4] Android Protected Confirmation. https://developer.
android.com/training/articles/security-andro
id-protected-confirmation, 2021.

[5] Android Security Bulletin-February 2021. https://so
urce.android.com/security/bulletin/2021-02-0
1, 2021.

[6] Biometric Prompt. https://developer.android.co
m/reference/android/hardware/biometrics/Biom
etricPrompt, 2021.

[7] Devices Secured by Knox. https://www.samsungknox.
com/en/knox-platform/supported-devices, 2021.

[8] Hardware-backed Keystore. https://source.android
.com/security/keystore, 2021.

[9] Insulin Pumps using Android Protected Confirmation.
https://android-developers.googleblog.com/2
018/10/android-protected-confirmation.html,
2021.

[10] Jadx. https://github.com/skylot/jadx, 2021.

[11] Knox Platform for Enterprise White Paper. https://im
ages.samsung.com/is/content/samsung/p5/ch/bu
siness/enterprise-edition/Knox_Platform_for
_Enterprise_Whitepaper_2019.pdf, 2021.

[12] Measuring SUS Score. https://measuringu.com/sus
/, 2021.

[13] Strong Customer Authentication EU. https://www.eb
a.europa.eu/regulation-and-policy/payment-s
ervices-and-electronic-money/regulatory-tec
hnical-standards-on-strong-customer-authent
ication-and-secure-communication-under-psd2,
2021.

[14] StrongBox. https://developer.android.com/trai
ning/articles/keystore#HardwareSecurityModul
e, 2021.

[15] TrustZone. https://developer.arm.com/ip-produ
cts/security-ip/trustzone, 2021.

[16] Verifying Hardware-backed Keypairs with Key Attesta-
tion. https://developer.android.com/training/a
rticles/security-key-attestation, 2021.

[17] Version Stats. https://gs.statcounter.com/andro
id-version-market-share/mobile-tablet/worldw
ide, 2021.

[18] Yubikey. https://www.yubico.com/, 2021.

[19] Apktool: A tool for Reverse Engineering Android Apk
Files. https://ibotpeaches.github.io/Apktool/,
2022.

[20] CVE Mitre. https://cve.mitre.org/, 2022.

[21] SARA Public Repository. https://github.com/pur
seclab/SARA-Secure-Android-Remote-Authoriza
tion, 2022.

[22] Smali. https://github.com/JesusFreke/smali/wi
ki, 2022.

[23] Amit Ahlawat and Wenliang Du. TruzCall: Secure VoIP
Calling on Android using ARM TrustZone. In Proceed-
ings of the International Conference on Mobile And Se-
cure Services (MobiSecServ), 2020.

USENIX Association 31st USENIX Security Symposium 1575

https://www.yubico.com/products/yubikey-bio-series/
https://www.yubico.com/products/yubikey-bio-series/
https://android.googleapis.com/attestation/status
https://android.googleapis.com/attestation/status
https://source.android.com/compatibility/cdd
https://source.android.com/compatibility/cdd
https://developer.android.com/training/articles/security-android-protected-confirmation
https://developer.android.com/training/articles/security-android-protected-confirmation
https://developer.android.com/training/articles/security-android-protected-confirmation
https://source.android.com/security/bulletin/2021-02-01
https://source.android.com/security/bulletin/2021-02-01
https://source.android.com/security/bulletin/2021-02-01
https://developer.android.com/reference/android/hardware/biometrics/BiometricPrompt
https://developer.android.com/reference/android/hardware/biometrics/BiometricPrompt
https://developer.android.com/reference/android/hardware/biometrics/BiometricPrompt
https://www.samsungknox.com/en/knox-platform/supported-devices
https://www.samsungknox.com/en/knox-platform/supported-devices
https://source.android.com/security/keystore
https://source.android.com/security/keystore
https://android-developers.googleblog.com/2018/10/android-protected-confirmation.html
https://android-developers.googleblog.com/2018/10/android-protected-confirmation.html
https://github.com/skylot/jadx
https://images.samsung.com/is/content/samsung/p5/ch/business/enterprise-edition/Knox_Platform_for_Enterprise_Whitepaper_2019.pdf
https://images.samsung.com/is/content/samsung/p5/ch/business/enterprise-edition/Knox_Platform_for_Enterprise_Whitepaper_2019.pdf
https://images.samsung.com/is/content/samsung/p5/ch/business/enterprise-edition/Knox_Platform_for_Enterprise_Whitepaper_2019.pdf
https://images.samsung.com/is/content/samsung/p5/ch/business/enterprise-edition/Knox_Platform_for_Enterprise_Whitepaper_2019.pdf
https://measuringu.com/sus/
https://measuringu.com/sus/
https://www.eba.europa.eu/regulation-and-policy/payment-services-and-electronic-money/regulatory-technical-standards-on-strong-customer-authentication-and-secure-communication-under-psd2
https://www.eba.europa.eu/regulation-and-policy/payment-services-and-electronic-money/regulatory-technical-standards-on-strong-customer-authentication-and-secure-communication-under-psd2
https://www.eba.europa.eu/regulation-and-policy/payment-services-and-electronic-money/regulatory-technical-standards-on-strong-customer-authentication-and-secure-communication-under-psd2
https://www.eba.europa.eu/regulation-and-policy/payment-services-and-electronic-money/regulatory-technical-standards-on-strong-customer-authentication-and-secure-communication-under-psd2
https://www.eba.europa.eu/regulation-and-policy/payment-services-and-electronic-money/regulatory-technical-standards-on-strong-customer-authentication-and-secure-communication-under-psd2
https://developer.android.com/training/articles/keystore#HardwareSecurityModule
https://developer.android.com/training/articles/keystore#HardwareSecurityModule
https://developer.android.com/training/articles/keystore#HardwareSecurityModule
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.android.com/training/articles/security-key-attestation
https://developer.android.com/training/articles/security-key-attestation
https://gs.statcounter.com/android-version-market-share/mobile-tablet/worldwide
https://gs.statcounter.com/android-version-market-share/mobile-tablet/worldwide
https://gs.statcounter.com/android-version-market-share/mobile-tablet/worldwide
https://www.yubico.com/
https://ibotpeaches.github.io/Apktool/
https://cve.mitre.org/
https://github.com/purseclab/SARA-Secure-Android-Remote-Authorization
https://github.com/purseclab/SARA-Secure-Android-Remote-Authorization
https://github.com/purseclab/SARA-Secure-Android-Remote-Authorization
https://github.com/JesusFreke/smali/wiki
https://github.com/JesusFreke/smali/wiki

[24] Francis Akowuah and Amit Ahlawat. Protecting Sensitive
Data in Android Sqlite Databases using TrustZone. In
Proceedings of the International Conference on Security
& Management (SAM), 2018.

[25] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and
Yves Le Traon. AndroZoo: Collecting Millions of An-
droid Apps for the Research Community. In Proceed-
ings of the International Conference on Mining Software
Repositories (MSR), 2016.

[26] Antonio Bianchi, Yanick Fratantonio, Aravind Machiry,
Christopher Kruegel, Giovanni Vigna, Simon Pak Ho
Chung, and Wenke Lee. Broken Fingers: On the Us-
age of the Fingerprint API in Android. In Proceedings
of the Annual Network & Distributed System Security
Symposium (NDSS), 2018.

[27] Bruno Blanchet. Automatic Verification of Security Pro-
tocols in the Symbolic Model: The Verifier ProVerif.
In Foundations of Security Analysis and Design VII
(FOSAD). 2013.

[28] John Brooke et al. SUS-A quick and dirty usability scale.
Usability Evaluation in Industry, 1995.

[29] Sven Bugiel, Alexandra Dmitrienko, Kari Kostiainen,
Ahmad-Reza Sadeghi, and Marcel Winandy. TruWal-
letM: Secure Web Authentication on Mobile Platforms.
In Proceedings of the Conference on Trusted Systems
(INTRUST), 2010.

[30] Danny Dolev and Andrew Yao. On the Security of Pub-
lic Key Protocols. IEEE Transactions on Information
Theory, 1983.

[31] Radhesh Krishnan Konoth, Björn Fischer, Wan Fokkink,
Elias Athanasopoulos, Kaveh Razavi, and Herbert Bos.
SecurePay: Strengthening Two-Factor Authentication for
Arbitrary Transactions. In Proceedings of the IEEE Eu-
ropean Symposium on Security and Privacy (EuroS&P),
2020.

[32] Juan Lang, Alexei Czeskis, Dirk Balfanz, Marius Schilder,
and Sampath Srinivas. Security keys: Practical Crypto-
graphic Second Factors for the Modern Web. In Pro-
ceedings of the International Conference on Financial
Cryptography and Data Security (FC), 2016.

[33] Wenhao Li, Shiyu Luo, Zhichuang Sun, Yubin Xia, Long
Lu, Haibo Chen, Binyu Zang, and Haibing Guan. Vbut-
ton: Practical Attestation of User-driven Operations in
Mobile Apps. In Proceedings of the Annual Interna-
tional Conference on Mobile Systems, Applications, and
Services (MobiSys), 2018.

[34] Wenhao Li, Mingyang Ma, Jinchen Han, Yubin Xia,
Binyu Zang, Cheng-Kang Chu, and Tieyan Li. Build-
ing Trusted Path on Untrusted Device Drivers for Mobile
Devices. In Proceedings of the Asia-Pacific Workshop on
Systems (APSys), 2014.

[35] Xiaolei Li, Hong Hu, Guangdong Bai, Yaoqi Jia, Zhenkai
Liang, and Prateek Saxena. DroidVault: A Trusted Data
Vault for Android devices. In Proceedings of the Interna-
tional Conference on Engineering of Complex Computer
Systems (ICECCS), 2014.

[36] Dongtao Liu and Landon P Cox. Veriui: Attested Login
for Mobile Devices. In Proceedings of the Workshop on
Mobile Computing Systems and Applications (HotMo-
bile), 2014.

[37] Jonathan M McCune, Adrian Perrig, and Michael K Re-
iter. Bump in the Ether: A Framework for Securing Sen-
sitive User Input. In Proceedings of the USENIX Annual
Technical Conference (Usenix ATC), 2006.

[38] Alina Oprea, Dirk Balfanz, Glenn Durfee, and Diana K
Smetters. Securing a Remote Terminal Application with
a Mobile Trusted Device. In Proceedings of the Annual
Computer Security Applications Conference (ACSAC),
2004.

[39] Bryan Parno. Bootstrapping Trust in a "Trusted" Platform.
In Proceedings of the Annual Summit on Hot Topics in
Security (HotSec), 2008.

[40] He Sun, Kun Sun, Yuewu Wang, and Jiwu Jing. TrustOTP:
Transforming Smartphones into Secure One-time Pass-
word Tokens. In Proceedings of the ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS),
2015.

[41] Xianbo Wang, Yikang Chen, Ronghai Yang, Shangcheng
Shi, and Wing Cheong Lau. Fingerprint-jacking: Practi-
cal fingerprint Authorization Hijacking in Android apps.
Blackhat Europe, 2020.

[42] Robert F Woolson. Wilcoxon signed-rank test. Wiley
Encyclopedia of Clinical Trials, 2007.

[43] Sileshi Demesie Yalew, Gerald Q Maguire, and Miguel
Correia. Light-SPD: A Platform to Prototype Secure Mo-
bile Applications. In Proceedings of the ACM Workshop
on Privacy-Aware Mobile Computing (PAMCO), 2016.

[44] Kailiang Ying, Amit Ahlawat, Bilal Alsharifi, Yuexin
Jiang, Priyank Thavai, and Wenliang Du. Truz-droid:
Integrating TrustZone with Mobile Operating System. In
Proceedings of the Annual International Conference on
Mobile Systems, Applications, and Services (MobiSys),
2018.

[45] Xianyi Zheng, Lulu Yang, Jiangang Ma, Gang Shi, and
Dan Meng. TrustPAY: Trusted Mobile Payment on Secu-
rity Enhanced ARM TrustZone Platforms. In Proceedings
of the IEEE Symposium on Computers and Communica-
tion (ISCC), 2016.

1576 31st USENIX Security Symposium USENIX Association

Appendix

Table 6 shows the pre-screening questionnaire that the prospective participants had to fill out to sign up for the study. Table 7 shows
the participant responses to the SUS questions in the survey regarding both APIs. Table 8 shows the ProVerif queries for the model
which simulates the Solitary Biometric protocol. Table 9, Table 10, and Table 11 show, respectively, the ProVerif queries for the
models simulating the Solitary Confirmation protocol, the Naive Combined protocol, and the Rectified Combined protocol.

Table 6: Pre-screening questionnaire for the user study
What of the following methods are not used with the AsyncTask class in Android?

OnPreExecution() OnPostExecution() DoInForeground() OnProgressUpdate()

Which of the following methods are used to get a response from an activity in Android?

startActivityToResult() startActivityForResult() Bundle() None of the above

What is the difference between services and thread in Android?

Services performs functionalities in the background.

By default services run on main thread only

Thread and services have the same

functionalities
Thread works on services None of the above

Which of the following methods can be used as broadcast receivers in Android?

sendIntent() onRecieve() implicitBroadcast()

sendBroadcast(),

sendOrderBroadcast(),

and sendStickyBroadcast()

What is a fragment in android?

JSON Piece of Activity Layout None of the above

Which component is not activated by an Intent?

Activity Services contentProvider broadcastReceiver

Which of the following is the first callback method that is invoked by the system during an activity life-cycle?

onClick() method onCreate() method onStart() method onRestart() method

What is the use of content provider in Android?

For storing the data in the database For sharing the data between applications
For sending the data from an

application to another application
None of the above

Which of the following android component displays the part of an activity on screen?

View Manifest Intent Fragment

The layout or design of an Android application is saved in a:

.text file .xml file .dex file .java file

Table 7: Summary of participant answers to the SUS questions for both APIs
SUS Questions Native API SARA API

1: Strongly Disagree, 5: Strongly Agree 1 2 3 4 5 1 2 3 4 5
Assuming you wanted to integrate these security features into your own app, would you like
to use this API frequently

9 4 1 0 0 0 0 0 2 12

I found this API unnecessarily complex. 1 0 0 6 7 13 1 0 0 0
I thought this API was easy to use. 12 2 0 0 0 0 0 0 1 13
I think that I would need the support of a technical person to be able to use this API. 1 0 0 2 9 11 2 1 0 0
I found that various functions in this API were well integrated and were easy to use together 9 3 0 2 0 0 0 0 0 14
I thought there was too much inconsistency in this API’s functions
which made it harder to use them together.

0 1 3 3 7 12 2 0 0 0

I would imagine that most people would
learn to use this API very quickly.

11 2 1 0 0 0 0 0 1 13

I found this API very cumbersome to use. 0 0 1 3 10 11 2 0 0 1
I felt very confident using this API. 11 2 0 0 1 0 0 2 1 11
I needed to learn a lot of things before I could get going with this API. 0 0 0 1 13 8 5 1 0 0

USENIX Association 31st USENIX Security Symposium 1577

Table 8: ProVerif queries and corresponding security goals and implications for the Solitary Biometric Protocol
ProVerif Query Security Goal Security Goal Achieved Security implication when

not achieved

1
query f:bitstring;
inj-event(serveraccepts(f))
==>(inj-event(userSeesPrompt(f))).

The legitimate user sees the action
the server performs (SG3) No

Attacker can authorize an action
the legitimate user is unaware of.

2
query f:bitstring;
inj-event(serveraccepts(f))
==>(inj-event(userAuthenticated(f))).

The legitimate user physically
authorizes the action
the server performs (SG4)

No
Attacker can authorize an action
the legitimate user did not approve.

3

query a:biosskey,b:confsskey,e:biospkey,d:confspkey;
inj-event(serverconfirms(e,d))
==>(inj-event(biosigned(a))
&& inj-event(confsigned(b))).

Server has a guarantee that
the action has been authorized
by the legitimate user (SG5)

No
The server performs an action
that was not authorized by
the legitimate user.

Table 9: ProVerif queries and corresponding security goals and implications for the Solitary Confirmation Protocol
ProVerif Query Security Goal Security Goal Achieved Security implication when

not achieved

1
query f:bitstring;
inj-event(serveraccepts(f))
==>(inj-event(userSeesPrompt(f))).

The legitimate user sees the action
the server performs (SG3) No

Attacker can authorize an action
the legitimate user is unaware of.

2
query f:bitstring;
inj-event(serveraccepts(f))
==>(inj-event(userConfirmsPrompt(f))).

The legitimate user physically
authorizes the action
the server performs (SG4)

No
Attacker can authorize an action
the legitimate user did not approve.

3

query a:biosskey,b:confsskey,e:biospkey,d:confspkey;
inj-event(serverconfirms(e,d))
==>(inj-event(biosigned(a))
&& inj-event(confsigned(b))).

Server has a guarantee that
the action has been authorized
by the legitimate user (SG5)

No
The server performs an action
that was not authorized by
the legitimate user.

Table 10: ProVerif queries and corresponding security goals and implications for the Naive Combined Protocol
ProVerif Query Security Goal Security Goal Achieved Security implication when

not achieved

1
query f:bitstring;
inj-event(serveraccepts(f))
==>(inj-event(userSeesPrompt(f))).

The legitimate user sees the action
the server performs (SG3) No

Attacker can authorize an action
the legitimate user is unaware of.

2

query f:bitstring;
inj-event(serveraccepts(f))
==>(inj-event(userAuthenticated(f))
&& inj-event(userConfirmsPrompt(f))).

The legitimate user physically
authorizes the action
the server performs (SG4)

No
Attacker can authorize an action
the legitimate user did not approve.

3

query a:biosskey,b:confsskey,e:biospkey,d:confspkey;
inj-event(serverconfirms(e,d))
==>(inj-event(biosigned(a))
&& inj-event(confsigned(b))).

Server has a guarantee that
the action has been authorized
by the legitimate user (SG5)

No
The server performs an action
that was not authorized by
the legitimate user.

Table 11: ProVerif queries and corresponding security goals and implications for the Rectified Combined Protocol
ProVerif Query Security Goal Security Goal Achieved Security implication when

not achieved

1
query f:bitstring;
inj-event(serveraccepts(f))
==>(inj-event(userSeesPrompt(f))).

The legitimate user sees the action
the server performs (SG3) No

Attacker can authorize an action
the legitimate user is unaware of.

2

query f:bitstring;
inj-event(serveraccepts(f))
==>(inj-event(userAuthenticated(f))
&& inj-event(userConfirmsPrompt(f))).

The legitimate user physically
authorizes the action
the server performs (SG4)

No
Attacker can authorize an action
the legitimate user did not approve.

3
query a:bioconfsskey,b:bioconfspkey;
inj-event(serverconfirms(b))
==>(inj-event(bioconfsigned(a))).

Server has a guarantee that
the action has been authorized
by the legitimate user (SG5)

No
The server performs an action
that was not authorized by
the legitimate user.

1578 31st USENIX Security Symposium USENIX Association

	Introduction
	Background and Threat Model
	Trusted Execution Environments
	Terminology
	TEE-enforced API Usage
	Threat Model

	Motivation
	TEE-enforced API's Market Analysis
	TEE enforced API's Intrinsic Limitations
	Vulnerable Protocols

	SARA Overview
	Design Goals and Requirements
	Comparison with Similar Efforts
	SARA's Protocol Design
	Alternative Protocol

	Implementation
	SARA's API Usage
	Android Library Implementation
	Server Module Implementation

	Verification using ProVerif
	Model Design
	Verifying SARA Security
	Attacks on Incomplete Protocols

	Usability and Practicality
	Participants Recruitment
	Experiment Design
	Results

	Performance Evaluation
	Limitations and Discussion
	Related Work
	Conclusions

